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SIMULATIONS OF SOLVENT EFFECTS ON CONFINED ELECTROLYTES

Lianrui Zhang, H. Ted Davis, Henry S. White

Department of Chemical Engineering and Materials Science

University of Minnesota

Minneapolis, MN 55455

Abstract

Monte Carlo simulations are reported for the solvent primitive model (SPM) of the
electrical double layer at electrically charged and neutral surfaces. Both solvent and ions

are modeled as hard spheres with interactions governed by hard sphere and Coulomb

interactions. Density profiles of solvent and ions and electrostatic potential profiles are

presented for 1:1 electrolyte concentrations of 1 and 2M at 300K. Comparison of results at

charged and neutral walls indicates that the density distribution of a dense solvent near a
wall induces significant layering of ions and decrease of potentials in the double layer. This

layering effect cannot be captured in simulations of the conventional primitive model (PM)
of the double layer. The solvent induced steric ordering of electrolyte ions at a neutral

wall can create a space charge layer.
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I. Introduction

Separation of charge in the vicinity of a surface that is either charged or neutral occurs

in a variety of phenomena in electrochemical, biological, tribological, and colloidal sciences.

For low surface charge and dilute electrolyte solutions, the classical theory of Gouy [1] and

Chapman [2], and later modified by Stern (GCS) [3] gives predictions of the interfacial ion

and potential distributions that are in excellent agreement with experiment and computer

simulations. More recent theoretical and computational studies have demonstrated that

the detailed structure of the solvent and ion are fundamental to accurately describe the

interfacial double layer properties for highly coupled systems at high bulk ion densities.

Among the models of the electrical double layer, the most widely used is the primitive

model (PM), in which ions are represented as point charges that are embedded in hard

spheres, the solvent is modeled as an isotropic dielectric continuum, and the surface mod-

eled as a hard wall with uniform surface charge density. Vigorous investigation of the PM

by computer simulations [4-111, integral equation methods, and functional theories [12-191

during the last decade have revealed phenomena of the electrical double layer that are not

captured by either the GC or other theories. For high surface charge densities or high

electrolyte concentrations, the ion density profiles in the PM predict a highly organized

layering of ions at the charged surface than either the GC or GCS. In particular, for 1:1

electrolytes, the conterion profile shows three distinct layers. For both 1:1 and 2:2 elec-

trolytes at high concentrations, there is charge inversion with colon densities exceeding the

counterion density in the second layer. Neither of these phenomena are predicted by the

GCS model, although the probable occurrence of both were Lacussed by Grahame [201 in

the interpretation of the interfacial tension measurements of Hg. The obvious disadvan-

tage of the PM is that the interfacial structure of the solvent is minimized, although it

is well known that ion solvation and dipole orientation at the surface, both of which are

critical in determining the potential and ion distributions, are correlated with the molecu-

lar structure of the solvent. The development of realistic models of water and the civilized

primitive model [211, in which the solvent is treated as a dipole embedded in a hard sphere,

allows the effects of the solvent structure on the double layer structure to be studied. The

complexity of realistic models of water limits studies of these systems to computational

simulations; however, very recent investigations of an electrified Pt/H2 0 interface [22) (no

ions present) demonstrates the importance of molecular solvent structure on the interface

potential distribution.
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A recent theoretical study of the civilized primitive model of the electrical double layer

by Russier et al. (23] notes the importance of steric effects imposed by the solvent on the

ion densities expected at a hard wall. These authors showed that the closest approach of an

ion to a neutral wall is determined by electrostatic ion dipole interactions between ion and

solvent which is proportional to the inverse square of the distance between the interacting

hard spheres and the solvent diameter. The results of Russier et al. are quantitatively

different from any previous results found in the PM, in that the closest approach of the

ion does not neccesarily correspond to intimate contact between the wall and ion.

In this work, we present Monte Carlo simulations of a jolvent primitive model (SPM)

of the electrical double layer in which the effects due to the finite size of solvent molecules

are included. Ion density and potential profiles are compared for electrolytes in contact

with charged and neutral wads for several surface charge densities and electrolyte concen-

trations. The key findings of our present work is that the finite size of the solvent results

in highly ordered layering of ions at both charged and neutral walls. For electrolytes com-

prised of different size anions and cations, the solvent induced structure results in a space

charged layer about two molecules thick at a neutral wall.

11. Model System

The systems simulated in this work are mixtures of 1:1 primitive electrolytes and

hard sphere solvent molecules contained between two infinite planar surfaces. One of the

surfaces (at z = 0) is uniformly charged and the other (at z = H) is neutral. The charged

side of the system is shown schematically in Figure 1 for solvent molecules and ions of

diameter d. In the computations, the systems are represented as a periodic array of closed

rectangular boxes of height H and a square base of length L on a side. The surface charges

on the wall at z = 0 is balanced by the excess counterions in the solution. N+ and N_

and q+ and q- are the number and charge of cations and anions in the enclosed system.

Electroneutrality requires

IN-q- - N+q+I = oA, (1)

where a is the surface charge density and A = L2 . The interaction potential between

particles i and j is
00 v, rij < (di+ +dj)/2

U(rij) = N, rij > (di + dj)/2, (2a)
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and between particle i and the wall is,

= f 00, z, <dj/2 (2b)U 1•) -27raqizi/e, zi > dj/2 , (b

where zi is the distance between the wall and particle i. In equations (2a,b), di is the

diameter of particle i, qj equals the ion valence times the unit electronic charge e. e is the

dielectric constant (taken to be 78.5 , the value of bulk liquid water, in the simulation).

Of course, if either i or j is a neutral particle the Coulomb potential in (2a) or (2b) is zero.

In the simulations the system is periodically extended in the x and y directions. The

resulting long range Coulomb potential between ions and their periodic replicas is given

by the sum obtained by (7,24]

U(r,,) = 4 cos(lt) E Ko(l ,(-i + 2irm)2 + (2) - ln(cosh( - coo v7). (3)
/-1 -00

with the notation that • = 2ir(xi - z,)/L, 17 = 2ir(yp - Vj)/L, and C = 2w(z, - zi)/L.

Ko(z) is the modified Bessel function which decreases to zero very quickly as x increases.

Ila Simulation

In order to run the simulation corresponding to fixed bulk salt concentrations, we first

run the grand canonical Monte Carlo (GCMC) simulations for the primitive electrolyte

systems in the following way [4-5]. The addition and deletion are attempted with equal

probability of about 10 percent and the moves are attempted at 80 percent probability.

At each addition or deletion a neutral pair of cations and anions are added or deleted. If

the probability of accepting a trial step from state i to state j is fij, then

.fij =+N exp [ B - 89(Uj - Uj)], (4)
fii Nj+!N;!

where Ný and NJ are the number of cations and anions in states i and j and

B = 2 Inw + ln(n+V+) + ln(n_-.V-), (5)

with -y* the mean ionic activity and ni is the number density of particle i with ni = Ni/V,.

Vi is the volume accessible to particle i. The Markov chain is set up according to

fij = min(1, fj/fji) addition,
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hi = min(l, fi/fii) deletion, (6)

fi= = rnin[l, exp(-3Uj,)] move,

where 1• - 1/kT with k is the Boltzmann constant and T is the tewverature. In the

simulations, T is fixed at 300 Kelvin. The ionic activity coefficients n,-y* = -0.127 and

0.271 (5] are used in the GCMC simulations respectively for systems (a - c) listed in Table

I. For systems d and e, there are no previously available data for In-y•*. Using equation (4),

for a 1 molar 1:1 electrolyte, we obtained the ionic activities from bulk electrolyte GCMC

simulations to be In-t+ = -0.318 and -0.44 for systems d and e, respectively.

For the confined systems, the average number of cations and anions corresponding

to the right bulk concentrations of the systems are obtained from GCMC simulations.

Subsequently, simulations of the SPM model of the double layer were carried out in the

canonical Monte Carlo (CMC) [7] simulations using systems (a - e). The total number of

solvent molecules and ions was fixed at

(N+ + N_ + No)d 3 /HL 2 , 0.7, (7)

where N+ and N_ are the average number of free ions in the confined PM fluid. This total

number density corresponds roughly to an aqueous solution at 300K. At such high density

a grand canonical Monte Carlo simulation is very hard to carry out due to the difficulties

in inserting particles. The simulation process can be divided into four steps:

(1) GCMC for bulk =* in-y+ and bulk concentration C

(2) GCMC for confined system with Iny:j and C =o Average N+ + N-

(3) Add solvent =I SPM, nd3  0.7

(4) CMC for SPM

When the electrolyte concentration is 1 molar, the box has a height of H = 12d and

base of L = 4.4d; reduced surface charge densities of a* =- ad 2 /e = 0.42 and 0.7, with

d = 4.25 A, were used in the simulations. For an electrolyte concentration of 2 molar,

H _ 14.14d and L = 4.5d, and a* = 0.40. These parameters as well as the solvent and

ion diameters are listed in Table I. The long range Coulomb interaction is handled by the

summation technique given in section II. The probability of acceptance used in the SPM

simulations is 10 percent. During che run, the systems were equilibrated for I0 5 steps and

then was run (2.5 - 4.0) x 10s to accumulate averages to calculate the density profiles n(z)
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and the mean electrostatic potential ;O(z). The density n(z) was obtained by counting the

number of particles in slices parallel to the walls and dividing by the volume. Very long

runs are required compared to the primitive electrolytes simulations, in order to eliminate

the noise in the density profiles. O(z) is obtained via the relation

(z)= - dz (z - zj )qinj(zx). (8)

Here we take the right wall as the reference point of the potential.

IV. Results and Discussion

In the following we report our simulation results of the density profiles and mean

electrostatic potentials for the different systems that are listed in table I. For all the

systems studied, the left side wall is charged and the right wall (at z = H ) is neutral. The

surface charge density, the ion and solvent density, and the mean electrostatic potential

are reported in the dimensionless forms

0 ad2  0 n
a, n and i&=feo, (9)

where ni. is the bulk number density for species i ion and is the number density for tne

neutral solvent.

To compare the results obtained here with those obtained for the primitive electrolytes,

in figure 2, we show the SPM results as continuous, dotted or dashed curves and the PM

results as open and filled circles for the case of a* = 0.42 and C = 1M. These PM results

were obtained in step (2) of the simulations and agree with previous simulations [4,7]. As

is well known, the Gouy-Chapman theory and simulations of the primitive electrolytes are

in agreement for low surface charge density and concentration. Both the density profile

and the mean electrostatic potential are monotonic. From the figure we can see that, the

solvent structure included in the SPM simulation has a dramatic effect on the electrolyte

ion profiles. The presence of solvent molecules at the walls induces strong structure in

the ion distributions at both charged and neutral walls. Near the left wall, the neutral

particles and counterions have five layers, the coions show four layers and near the right

wall there are four layers for all particles. A small residue of the coions near the left wall is

in the SPM model simulation. These structural features are absent in the PM simulations.

Figure 3 shows the mean electrostatic potential for the same system as in figure 2, the
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potential decreases rapidly near the charged wall and decays to zero. As mentioned in

section III, the noise in the density profiles prevents us from getting more accurate results

to see a clear trend of the potential.

Figures 4 and 5 are from the simulations with a* = 0.7 and C = 1M. The layering

of ions is very distinct as seen in figure 2. Because the strong field on the left wall, the

colons were completely repelled from the wall in the PM. However, the hard sphere solvent

and ion interactions in the SPM again result in a significant ordering of coions near the

charged surface. The mean electrostatic potential of the SPM decreases more rapidly near

the charged wall than does that of the PM. The deviations of our simulations are shown
.in errorbars in both figures 4 and 5. This was obtained from five equal length segments

of the simulations with different seeds for the random number generator and started with

the previous final configuration as the initial configuration of the new run. Notice that the

errorbars for the counterions is 0.1d ahead in its z coordinates than the coions and solvent

particles in figure 4.

In figures 6 and 7, we change the ion concentration to 2M and use a, 0.4. Again the

layering of ions is very strong and similar to figures 2 and 3. Furthermore, a charge inversion

occured in the second and third layer with the coion density exceeding the counterion.

To see intuitively how a dense solvent will induce significant structure in the ion

density distributions even though the ions are present at low concentration, let us consider

a dense hard sphere mixture confined by a hard wall. Suppose one component is present

at high density and the others are present at low concentrations. Suppose also that all

hard sphere species have the same diameter. Then the total density distribution n(z)

(n = Fla n') near the wall would be that of a one component hard sphere fluid. At high

densities this is known to be a highly oscillatory function. The probability density that

any hard sphere will be found at position z is n(z)/N (N - , N.) and, since the hard

spheres all have the same diameter, the probability that this hard sphere is species a is

Xz, where xz is the mole fraction of a. Thus, the probable density n0 (z) of species a at

z is n.(z) = Nz,,(n(z)/N) = Zan(z). This result shows that the density profiles of all

hard sphere species have the same structure, the difference being simply that their ratios

nc,(z)/ne(z) scale as their mole fraction ratio z./zg. As indicated by the results shown

in Figures 3-7, adding charge to the confined walls and to the electrolyte modulates the

density oscillations somewhat, but does not appreciably shift the positions of the maxima

and minima from those induced by the hard sphere repulsions.
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To examine the effects of ion diameters on the highly structured ion distributions of

the SPM, we ran simulations for two different electrolytes comprised of dissimilar sized

particles, namely, d+ = 0.75d- and d+ = 0.5d- . The results are given in figures 8

through 11. These results show that the colon peaks shift due to the size effect but there

is still significant layering structure in the ion and solvent density distributions. Ion-size

induced charge separations is clearly seen near the neutral wall. Due to the noise in the

density profiles, we cannot make an accurate estimate of the potentials resulting from

these separations. Comparing the density profiles in figures 8 and 10, one can see that

the layering seems mainly determined by the larger solvent and counterions near the two

walls, even though the effect of the coion size made the peak shift a little. Again these

structures are absent in PM electrolytes.

From the above analysis and comparision with the primitive electrolyte simulations

we see the essential role of the solvent in determining the structure of electrolytes at solid

surfaces. In fact, the layering structures appearing in the SPM electrolytes are mainly due

to the high total fluid density resulting from the presence of the solvent molecules. The

small residue of coions near the charged surfaces is due to the layering of the solvent and

counterions. The fact that we did not observe stronger structures near the charged wall at

higher surface charge density (a* = 0.7) than at lower surface charge densities ( a* -, 0.4)

confirms the idea that the effect of the solvent plays a more important role in determining

the electrolyte structure than solely by the surface charge hard sphere ion interactions, as

is the case of the primitive electrolyte. In all cases that have been studied in this paper,

the mean electrostatic potential of the SPM is smaller than that obtained from the PM

near the charged wall.

Finally, we test our results for consistency by comparing in Table II the simulated

difference, 0(0) - 0(d/2), with the value of 21rad/e, since theoretically

21rad
0(0) = 0(d/2) + d (10)

The numbers in Table II show that the agreement is very good. Also shown in Table II

are values obtained by Valleau and coworkers in a grand canonical ensemble simulation of

the primitive model electrolyte at the same conditions that we used. Their results also

obey eq.(10) quite accurately. Our values of V;(0) and 0 (d/2) differ somewhat from theirs.

The difference perhaps arises from size difference of the simulated systems (they use much

larger systems than ours).
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The input surface charge density a agreed with that computed from the ion density

distributions, --J' qinj(z) dz, •1
A=• /2•

to the fourth digit. This is guaranteed in our simulations by the charge balance of eq.( I),

The apparent structure of the interfaces obtained from the solvent primitive model

may provide new insight into the interaction of charged particles near surfaces. The layering

of molecules near a surface would be reflected by oscillatory interaction forces. Force

measurements using mica surfaces have revealed short range oscillatory electrical double

layer forces [25-29].
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Table I. Parameters used in this paper, a ad2 /e, side length L, surface separation

H. Number of cations, anions, and neutral particles are N+ , N., and No, and Nc =

N+ + N-, AN = N_ - N+ = oA, A = L x L. C is the bulk ion concentration for PM

electrolytes in molar. The number of steps run in the simulations are given as Nsteps in

unit of 10' steps in the last column. In all the cases studied in this paper the neutral

solvent particle and the anion have diameter of do = d- = d = 4.25 A. For systems a-b, c.

d and e, ln-y± = -0.127, 0.271,-0.318 and -0.44, respectively.

sys H/d L/d d+/d- a* N, No AN C(M) Nsteps/lO6

a 12.0 4.36 1.0 0.42 26 134 8 1.0 4.0

b 12.0 4.47 1.0 0.70 32 136 14 1.0 2.5

c 14.14 4.5 1.0 0.40 54 146 8 2.0 2.6

d 12.0 4.36 0.75 0.42 26 134 8 1.0 2.5

e 12.0 4.36 0.5 0.42 26 134 8 1.0 2.5

Table II. Results of the SPM (computed in canonical ensemble, CMC) and PM (com-

puted in the grand canonical ensemble,GCMC) simulations of the total potential drop

across the double layer 0; = 0*(0) and the diffuse layer mean electrostatic potential

0*(d/2) as calculated from eq(8) with a bin size dz = 0.1d and compared with eq(ll). For

systems d and e, we give the diffuse layer potential at d/2. The numbers in parenthesis

are the numerical'uncertainties determined from consequent simulation segments.

sys a b c d e
SPM 'k(,) 1.11 1.75(0.18) 0.45 1.06 1.32

0 5.52 9.10(0.18) 4.60 5.47 5.73

Oo - 0'(") 4.41 7.35 4.15 4.41 4.41

PM 0.(d) 2.78(0.04) 4.60(0.02) 1.75(0.07) 2.82(0.02) 2.89(0.02)

3.08(0.1)t 5.71(0.14)t 2.29(0.09)t

0/,• 7.19(0.13) 11.95(0.04) 5.90(0.07) 7.23(0.02) 7.30(0.02)

7.52t 13.10t 6.47t

0o - 0*(t) 4.41 7.35 4.15 4.41 4.41

4.44t 7.39t 4.18t

S4.41 7.356 4.16 4.41 4.41

t GCMC simulations from reference [5].
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Figure Captions

Figure 1. Schematic representation of solvent molecules and ions of diameter d near a uniformly

charged flat, impenetrable wall.
Figure 2. Reduced Density profiles n*(z) = n(z)/no for a 1:1 electrolyte at C=lM and d+ =

d- = d = 4.25 A. The left wall has a surface charge density of a* = ad2 /e = 0.42 and

the right wall is uncharged.

Figure 3. Reduce Mean electrostatic potential 0*(z) for a 1:1 electrolyte for the same conditions

as in figure 1.

Figure 4. Reduced Density profiles n*(z) for a 1:1 electrolyte at C=1M and a* = 0.7 . Other

conditions and keys are the same as in figure 1. The errorbars for the counterions are

0.1d ahead in the z coordinates than the coions and solvent particles.
Figure 5. Reduce Mean electrostatic potential *(z) for a 1:1 electrolyte for the same conditions

as in figure 3. Errorbars are shown for SPM.
Figure 6. Reduced Density profiles n*(z) for a 1:1 electrolyte at C=2M and a, = 0.40 . Other

conditions and keys are the same as in figure 1.
Figure 7. Reduce Mean electrostatic potential tk*(z) for a 1:1 electrolyte for the same conditions

as in figure 5.

Figure 8. Reduced Density profiles n*(z) for a 1:1 electrolyte at C=1M and a* = 0.42. d+ =
3d-. Other conditions and keys are the same as in figure 1.

Figure 9. Reduce Mean electrostatic potential t*(z) for a 1:1 electrolyte for the same conditions

as in figure 9.

Figure 10. Reduced Density profiles n*(z) for a 1:1 electrolyte at C=1M and a* = 0.42 . d+ =

ld_. Other conditions and keys are the same as in figure 1.

Figure 11. Reduce Mean electrostatic potential 0*(z) for a 1:1 electrolyte for the same conditions

as in figure 7.
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